Order Parameters for Visual Inference

Alan Yuille
UCLA
Dept. Statistics and Psychology.

How hard are visual tasks?

Easy, Medium, and Hard target detection.

- What are the factors that determine how hard a task is?
- When can tasks be solved?
 How fast can we solve them?
- What approximations can we make and still solve them?

Bayes Risk and Performance

- Bayes Risk. I.
- I is the input data and W is the representation we seek to compute.
- Seek a decision rule W=d(I).
- d(I) can be a analytic function, the solution of a PDE, filter response...

Bayes Risk and Performance

- Bayes Risk. II.
- Need an error criterion L(W,d(I)) the loss of making decision d(I) when the true solution is W.
- Need a dataset of problem examples,
 Ensemble of problem instances
 P(W,I).

Bayes Risk and Performance

Bayes Risk. III.

Risk:
$$R(d) = \sum_{I,W} L(W, d(I)) P(W, I)$$
.

Bayes Risk = $\min_d R(d)$.

If we restrict the class of decision rules to Ω , then performance degrades to $\min_{d \in \Omega} R(d)$.

Bayesian Decision Theory

- Most existing work on performance analysis of visual algorithms is, implicitly, or explicitly, formulated in these terms.
- Frequentist bounds, ROC curves,
 Cramer-Rao, Hilbert-Schmidt, etc.
- But there are limited analytic studies for realistic vision problems.

- Use Bayesian Decision Theory to obtain analytic performance bounds for road detection.
- Performance will be determined by order parameters.
- Phase transitions in performance at critical values of order parameters.

Road Detection

- Road Detection from Aerial Images. (Geman '96)
- Task: find and track the road.
- Performance and
 Complexity analysis (Yuille,
 Coughlan), (Yuille, Coughlan,
 Wu, Zhu).

Geman and Jedynak Model.

A path is a sequence of moves {t_i} on a Q-nary tree. This determines a path in the image {x_i}:

$$x_{i+1} = x_{i} + w(x_{i}-x_{i-1}) + x_{i}$$

• where w(.) is an arc of fixed length and depends on the angle of t_(i) relative to Previous segment x_(i)-x_(i-1).

Geman and Jedynak Tree

3-nary tree.

Geman and Jedynak Model

- Geometric prior on path expressed by
 P({t_(i)}) = P_g(t_(1)) P_g(t_(n))
 (can generalize to first order Markov).
- Likelihood function: filter response is drawn from P(y_(i)|on) or P(y_(i)|off) if filter is evaluated on or off the road.

Geometric Prior.

Example of a geometric prior.

Samples of curves with elastica model (Mumford 1995).

Likelihood Function

P-on and P-off (empirical).

Geman and Jedynak Model

• MAP estimation corresponds to finding the path that maximizes the reward function:

$$r(\{t_i\}, \{y_i\}) = \frac{1}{N} \sum_{i=1}^{N} \log \frac{P_{on}(y_i)}{P_{off}(y_i)}$$

$$+\frac{1}{N}\sum_{i=1}^{N}\log\frac{P_g(t_i)}{U(t_i)},$$

U(.) is uniform distribution.

A* Search to get MAP

Tree Search (Left). A* heuristic.

Model Performance

- Geman and Jedynak report good performance with convergence linear in length N of road.
- But, others report (privately) poor results using this algorithm.

Theoretical Analysis

- Problem formulation defines an ensemble of problem instances.
- P({t_(i)},{y_(i)}) determined by the geometric prior P({t_(i)}) and the likelihood function P({y_(i)}|{t_(i)}).
- Likelihood function is factorized in terms of P_on and P_off.

4

Distribution for rewards.

- Calculate the probability distribution for the reward on the road path, with respect to ensemble P({t_(i)},{y_(i)}).
- Calculate the distribution for the reward for the Q^N-1 off road paths.
- These calculations are possible because of shift-invariance (self-averaging).

Analysis using Sanov's Thm.

Theorem (Phase Transition).

Let K=D(P_on||P_off) + D(P_g||U) - **log** Q. Then:

- (I) Bayes risk tends to 0 as N tends to infinity if, and only if, K > 0.
- (II) Bayes risk tends to 1 as N tends to infinity if K<0.

D(.//.) is Kullback-Leibler divergence.

Examples:

- Order Parameter K:
- \bullet K=0.8647, K =0.2105, K =-0.7272.

-

Bounds from Sanov's Thm.

- Properties of interest error rates are bounded by terms such as
 e^ (-N K) for large N.
- Sanov's Theorem see Cover and Thomas (1991) applies to i.i.d. samples (requires distributions to be factorized).

Convergence Rate.

Similar analysis shows:

Expected Complexity is O(N),
 if K > T >0, (T is a small constant).

Coefficient of N is bounded by simple function of K.

Worst case is exponential in N. But typical performance is far better.

Ensemble Analysis

 Our analysis shows that the ability to detect the road depends on an order parameter K.

K is a function of the probability distributions describing the problem. (France, Portugal,...).

- (I). If K <0, the task cannot be solved by any algorithm (needle in haystack).
 - (II). If K > 0, the task can be solved.

Approximations.

- Perform Inference using an approximate model P_g^a instead of P_g. (sufficient statistics).
- This reduces the order parameter:

$$K^a = K - D(P_g||P_g^a).$$

 This reduces performance by a quantifiable amount -- D(P_g||P_g^a).

More General Models

- Generalize previous results to allow For: (I) Non-factorizable models, (II) Models defined on the image lattice, (III) Starting point is unknown.
- Our results are purely asymptotic
 in N. They use Large Deviation Theory.

4

General Examples.

- Performance is determined by order parameters K as before:
- Example: K = 1.00 and K = -0.43

Approximate Models

- Similar Analysis for approximate models. (Sufficient statistics).
- Order parameters get reduced by terms such as D(P_g||P_g^a).
- Requires the approximation P_g^a to use a subset of the statistics used by P_g
 See Minimax Entropy (Zhu, Wu, Mumford)

Summary

- Performance Bounds required for evaluating vision algorithms.
- Theoretical bounds can be determined in some cases. Order parameters K for characterizing task difficulty.
- Alternatively, frequentist measures on datasets with ground truth.